

Test and Turn Up of Ethernet Based Business Services

Mark Leupold JDSU

Business Services in the MSOs

- The Old Way (RBOCs were the only option)
 - Leased Lines (DS1, DS3) for pt to pt
 - Frame Relay or ATM for Switched Data Services
 - SONET Based Networks
- The MSOs join the game
 - MetroE
 - Dedicated Internet Access (DIA)- Layer 3 Ethernet
 - Cell Backhaul
 - Ethernet Gateway (aka Type 2 or NNI)
 - Business Voice Services
 - PRI-ISDN
 - VOIP (SIP) Trunking
- All of these Business Services are delivered by utilizing the MSOs Ethernet Network

Access Methods

- Service may be delivered over
 - Copper Plant
 - **HFC** Plant
 - **Dedicated Fiber** •
 - WDM
- Each Technology has its Strengths

Other than price -- what was the single most important factor in the decision to purchase the wireline network services used by your enterprise (includes Private Lines, FR/ATM, Dedicated IP VPNs, Business DSL, Ethernet, etc.)?

% of Enterprise Customers

Based on customer survey in the USA

Service Type	Port-Based	VLAN-Based
Point-to-Point	Ethernet Private Line (EPL)	Ethernet Virtual Private Line (EVPL)
Multipoint-to- multipoint	Ethernet Private LAN (EP-LAN)	Ethernet Virtual Private LAN (EVP-LAN)
Rooted multipoint	Ethernet Private Tree (EP-Tree)	Ethernet Virtual Private Tree (EVP-Tree)

- The most popular Ethernet service
- Replaces a TDM Private line
- Dedicated UNIs for Point-to-Point connections
- Single Ethernet Virtual Connection (EVC) per UNI

Ethernet Virtual Private Line (EVPL)

- Replaces Frame Relay or ATM services
- Allows single physical connection (UNI) to customer premise equipment for multiple virtual connections
- VLANs are used to identify multiple connections

Ethernet LAN Services (EP-LAN/EVP-LAN)

E-LAN Service used to create

- Multipoint L2 VPNs
- Transparent LAN Service
- Foundation for Multicast networks

MEF certified Carrier Ethernet products **UNI:** User Network Interface, **CE:** Customer Equipment

- E-Tree Service Used for Applications requiring Point-to-Multipoint topology
 - Mobile cell site backhaul, Video on demand, internet access, triple play backhaul, franchising applications
- Provides traffic separation between 'Leaf' UNIs
 - Traffic from any "leaf" UNI can be sent/received to/from "Root" UNI(s) but never being forwarded to other "Leaf" UNIs

Business Phone Services

- **Digital Phone**
- **PRI/CAS** Trunking
- SIP Trunking
- **IP** Centrex

JDSU

RFC-2544

Loopback

....

....

Speed test, FTP, or IPERF

Server

Business Phone Services

- **Digital Phone**
- **PRI/CAS** Trunking
- **SIP** Trunking

RFC-2544

Speed test, FTP, or IPERF

Server

Ethernet Basics

SONET – Ethernet OSI Layer Comparison

OSI Layer Model

The Physical Layer

- The Physical Layer
 - Copper CAT-5e/6
 - Optical
 - SingleMode, Multi-Mode Fiber
 - 850nm, 1310nm, 1550nm

Multimode Fiber

Rates

- 10/100BaseT Primarily Electrical
- 1GigE Optical and Electrical
- 10GigE High Speed Optical Interconnects
- 40/100GigE Latest Standard

SFP

SingleMode Fiber

Ethernet Physical Layer

- Most common Ethernet Physical Layers
- Key concept is to use the correct wavelength

	10 Mbps	100	1 Gbps	10 Chos
	IVIDPS			Gubs
Electrical (copper)	100	100	100	
	meters	meters	meters	
Optical Multimode		2000	550	100
(850nm)		meters	meters	meters
Optical Singlemode		15000	10000	10000
(1310nm)		meters	meters	meters
Optical Singlemode			40000	40000
(1550nm)			meters	meters

Physical Layer link establishment

Step 1 (optical only)

Light is seen on both sides

Step 2

Byte synchronization takes place

Step 3

Each node is set for

➢ 10, 100, or 1000 Mbps

Half Duplex/Full Duplex

Flow control on/off

Done by internal setup or Auto-Negotiation

Duplex Mismatch

> Auto-Negotiation – establishing duplex

- advertises flow control and FDX/HDX capabilities to the other side
- Must be the same on both ends of a connection

Full Duplex/Half Duplex

- > Full Duplex transmit and receive at the same time (phone)
- Half Duplex sides take turns transmitting and receiving (walkie talkie)
- Auto-Negotiation Mismatch

JDSU

- One side on and one side off leads to duplex mismatch
 - Link appears to be active (green LEDs)
 - Once traffic ramps collisions and errors bring link to a standstill

FDX

Pre (7) SFD (1) DA (6) SA (6) L/T (2)

- The Datalink layer relies on layer 2 overhead for physical addressing and error detection.
- Same frame format regardless of rate (10/100/Gigabit/10 Gigabit)
- Frames are separated by a Preamble and Start of Frame Delimeter (SFD) (Note: these fields are included in Layer 1 results but not Layer 2 results)
- Frames are sent from a Source MAC Address (SA) to Destination MAC Address (DA)
- Length or Type (L/T) Field is dependent upon Frame Type (802.3 or DIX)
- Data or Payload field is Variable length. Test frames include a sequence #, time stamp, and BERT pattern.
- MTU determines maximum frame length. 64 1518 bytes, or up to 10,000 bytes for Jumbo frames
- At the end of each frame is an FCS (frame check sequence) to detect errors

FCS (4)

Data (46-10,000)

Benefits

- Enables logical segmentation of traffic/networks
 - Many virtual pipes in one physical pipe
- Separates Broadcast Domains
- Provides Security
- Operates at Layer 2

Preamble (7) SFD (1) DA (6) SA (6) SVLAN (4 CVLAN (4 L/T (2) Data (46-1500) FCS (4)

Allows for customer and service provider VLANs

➢ S-VLAN Tag − 4 bytes

Specifies which provider VLAN group (customer)

> Traffic switched & prioritized in core network by S-VLAN tag

C-LAN Tag – 4 bytes

VLAN with customer significance

DA SA SVLAN CVLAN L/T (2) IP DA IP SA TOS/DSCP Data (46-1480) FCS (4)

- IP Header is 20 bytes long with numerous fields
 - Destination & Source Address
 - > TOS/DSCP bits (3)
- IP addresses
 - Are 32 bits long and expressed in octets (xxx.xxx.xxx with xxx = 0-255)
 - Note: For IPv6 increases to 128 bits
 - Can be statically configured or dynamically assigned via DHCP Application
- IP uses the TOS/DSCP field to prioritize IP traffic
 - TOS/DSCP is in addition to VLAN priority
 - TOS/DSCP is used by routers or IP switches to properly queue IP traffic
- Gateway IP Address is IP address of router that knows other networks
- Net Mask is also a 4 octet value (xxx.xxx.xxx) that separates network and host part of address
- ARP messages are used to map MAC addresses to IP addresses

Presentation

Session

Transport

Network

Datalink

Physical

Ethernet Switching Rules

Errored Frames are discarded by Ethernet devices

- If LOST FRAME errors are occurring that means that the frame was dropped in transit.
- For example, errors occurring between A and B will be seen by the switch receiving them.
- > However, errors occurring from A to B won't be seen by C.
- Only way to view this is to have a sequence number in each packet and detect if packets were lost in transit.

Ethernet Switch Operation

Switch operation

- Any traffic for A, forward to port #1
- > Any traffic for B, forward to port #2

Port	MAC Addresses
1	А
2	В
3	
4	

🔷 JDSU

- Can't hard loop a switch
 - Switch will see frame destined for B coming into Port #2 and will not forward it back to port #1. Frame will be dropped.

T-BERD with MAC Address A

Ethernet Rule #2 - Loops

- For a loop to work on the switch, the Source and Destination addresses within the frame must be swapped
- This is what happens when test equipment is "looped up"

Policing and Shaping

• Traffic policing and Shaping are methods of enforcing Committed Information Rates

Policing

Traffic policing will **drop** the excess packets that are above a predefined traffic rate

Traffic shaping will **buffer and queue** the excess packets that are above a predefined traffic rate

Effects of Policing versus Shaping

Key points:

- Most routers and multi-layer switches can perform shaping
- Network providers can provide better QoS by shaping customer traffic

Turning up and Troubleshooting Metro Ethernet

Loopback devices

 Traffic can either be generated Head to Head between two test sets or to a Loopback Device. Test Sets and some layer 2 switches support special software loopback that swap Source and Destination MAC addresses and IP addresses. Vendor Proprietary loopback messages are used to place a device in local loopback mode.

Some Test equipment, switches and NIDs also support IEEE 802.11ag Loopback Messages.

 Due to the behavior of Layer 2 switches and routers, hard loops cannot be used for loopback.

Testing Metro Ethernet for Internet Access

Testing Metro Ethernet for EPL/EVPL

SLA or MOP requirements

🔷 JDSU

Testing Metro Ethernet for Voice Trunking

🔷 JDSU

or MOP requirements

Portable to Portable Testing for Cell Backhaul

- - Tech goes to a cell site
 - T-BERD is placed in wait for loopback mode
 - Tech Runs a "Quick test" on each VLAN to verify connectivity and throughput
 - Full RFC-2544 test is run on each VLAN to T-BERD at MSC

Portables and Systems Solution for Cell Backhaul

Value

eps Techs moving and working – Sites turned up faster

Metro Ethernet Installation Test Process

🔷 JDSU
Jumper Cables

Multimode Duplex Fiber Optic Cable Orange Singlemode Duplex Fiber Optic Cable Yellow

You CANNOT connect Multimode to Singlemode

 You CAN connect different core sized cables (Multimode to Multimode, Singlemode to Singlemode) however, you will experience loss For example, connecting 50/125 to 62.5/125 you will experience 2 dB of loss **Types of Endfaces**

 The angle reduces the amount of light reflected at the connector interface.

Pluggable Optics

SFP = Small Form-factor **P**luggable is a compact, hot-swappable optical transceiver used for 1 Gbps Ethernet and other applications.

XFP:10 Gigabit **P**luggable for 10 Gbps Ethernet and other applications.

QSFP+/CFP: 40/100 Gigabit Pluggable for 40 to 100 Gbps Ethernet

Test Application	Description	Manufacturer	Manufacturer	Opt Powe	ical r dBm	Rx Sensitivity
Test Application	Description	Manufacturer	Part Number	Min	Max	dBm
		JDSU	JSH-42S4DR3			
	SED GigE 850pm 200m SY	JDSU	JDSU JSH-21S3AR3	15	17	
	SFF GigE, 630filli, 300fil, 3A	Finisar	FTRJ8519P1BNL	-9	-1.5	-17
		Finisar	FTLF8519P2BNL			
	SFP GigE, 1310nm, 20km, LX	JDSU	JSH-21L3AR3			
1 GigE Optical Ethernet		Finisar	FTRJ1319P1BTL	-9.5	-3	-21
		Finisar	FTLF1319P1BTL			
		JDSU	JSH-12Z0CE1-80			
		JDSU	CT2-GI2LKTD53C5		F	01
	SFP GigE, 1550nm, 80km, 2A	Finisar	FTLF1519P1BCL	1 0	5	-21
		Finisar FTLF1519P1BCL		1		
	SFP BiDi 1GEth, TX1310nm,	OE Solutions	RBT12SLX-ST3	0	-3	10
40Eth DiDirectional Option	RX1490, 10Km, SM	Source Photonics	FTM-9612C-SL10G	-9		-19
TGEth BiDirectional Optical	SFP BiDi 1GEth, TX1490nm,	BiDi 1GEth, TX1490nm, OE Solutions RBT12SLX-ST4		2	-19	
	RX1310, 10Km, SM	Source Photonics	FTM-9912C-SL10G	3 -9		
		JDSU	CT2-GI2LBCW13C5	4	0	22
		JDSU SFP-ML2LCC47DCA		4	0	-23
		JDSU	CT2-GI2LBCW23C5	4	0	22
1 GigE CWDM Optical 1471		JDSU	SFP-ML2LCC49DCA	4	0	-23
nm - 1531 nm	SED CW/DM 1C 1511 pm CW/DM	JDSU	CT2-GI2LBCW33C5	4		00
		JDSU	SFP-ML2LCC51DCA	7 4		-23
		JDSU	CT2-GI2LBCW43C5	4		22
		JDSU	SFP-ML2LCC53DCA	4	0	-23
		JDSU	CT2-GI2LBCW53C5	4	0	22
		JDSU	SFP-ML2LCC55DCA	4	0	-23
		JDSU	CT2-GI2LBCW63C5	4	0	
1 GigE CWDM Optical 1551		JDSU	SFP-ML2LCC57DCA	4	0	-20
1111 - 1011 1111	SED CM/DM 1C 1501 pm CM/DM	JDSU	CT2-GI2LBCW73C5	4	0	22
		JDSU	SFP-ML2LCC59DCA	4	0	-23
	SER CW/DM 1G 1611 pm CW/DM	JDSU	CT2-GI2LBCW83C5	1	0	22
		JDSU	SFP-ML2LCC61DCA	4		-23

The **3 basic principles** that are critical to achieving an efficient fiber optic connection are "The **3 P's**":

- Perfect Core Alignment
- Physical Contact
- Pristine Connector Interface

Today's connector design and production techniques have eliminated most of the challenges to achieving Core Alignment and Physical Contact.

Follow this simple "**INSPECT BEFORE YOU CONNECT**" process to ensure fiber end faces are clean prior to mating connectors.

Contamination and Signal Performance

Back Reflection = -67.5 dB Total Loss = 0.250 dB

Back Reflection = -32.5 dB Total Loss = 4.87 dB

Fiber Contamination and Its Effect on Signal Performance

Clean Connection vs. Dirty Connection

This OTDR trace illustrates a significant decrease in signal performance when dirty connectors are mated.

IEC 61300-3-35 Acceptance Criteria

- These criteria are designed to guarantee a common level of performance
- Separate criteria for different connector types
 - SM-UPC (RL>45db)
 - SM-APC
 - SM-PC (RL>26dB)
 - MM
 - Multi-fiber

Example of Pass/Fail Criteria (SM-UPC)

ZONE NAME	SCRATCHES	DEFECTS
A. CORE (0–25µm)	None	None
B. CLADDING (25–120μm)	No limit <= 3µm None > 3µm	No limit < 2µm 5 from 2–5 µm None > 5µm
C. ADHESIVE (120–130μm)	No limit	No limit
D. CONTACT (130–250μm)	No limit	None => 10µm

🔷 JDSU

Standalone, USB, or integrated meters verify optical power levels meet requirements of receivers.

- Test new wavelength route not yet in use
- Make sure wavelength goes through
- In-service test when other wavelengths already active
 - OTDR test without disturbing current traffic
 - Reliable OTDR test taking other wavelength powers into account

CWDM OTDR 1551nm testing

1311nm shot through Mux and Demux in presence of other wavelengths

DWDM Deployments

- No Such Thing as a DWDM OTDR
- Use DWDM Tunable Laser Source to send thru DWDM filters
- Verify presence of DWDM wavelengths & that Power Levels are within manufacturers specifications
 - Power Meter-

JDSU -

- Wavelength settable use on drop side only (can only have 1 wavelength on the fiber)
- Optical Channel Checkers
 - AUTODETECTs which C-band DWDM wavelengths are on the fiber & their power levels (use on drop or common fiber sides)
- Optical Spectrum Analyzer (OSA)
 - Full Spectrum Analysis (CWDM & DWDM)

OTDR Testing on DWDM:
Use standard OTDR (1310/1550 nm)
Disconnect fiber from DWDM mux/demux and test drop side locally from each side

Bi Directional Thru Mode – 'Non Intrusive'

Non Intrusive Switch/Router **Terminate -**Intrusive

Mirrored Port -

Near End Connectivity

Near End Connectivity

Connecting to the near end equipment:

- Step 1 (optical only) Lasers are activated, "Signal Present" is displayed at the test set
- Step 2 Byte synchronization takes place.
 "Sync Acquired" is displayed.
- > Step 3 Link becomes Active.

Test Set and near end

equipment are set for:

- Same speed
- Full Duplex
- Done by internal setup or Auto-Negotiation
- Check for mismatches!

VC mts5800:0		
System Ersts	R 🔀 🚺	9:50 AM
New Reports Tools Help 🔞	Port 1: 10/100/1000 Eth Layer 2 Traffic Term	
Port 1: 10/100/1000 Eth Layer 2 Traffic Term	Rupping 25s	Setup
Messages logged. Click to see		, ∎⇒
Ethernet Payload LBM/LTM J-Connect		
On Auto Neg. Test Mode Frame Size		Restart 7
Summary	Ethernet AutoNeg Status	Stop
Ethernet Acterna Test Packet Detect	OFF Link Advt. Status Done	Test
O Sync Acquired	Link Config ACK No	
Stame Detect	Speed (Mbps) 100	
🖷 💿 ATP Detect	Duplex Half	SAM-
O Pattern Sync	10Base-TX FDX Unavailable	Complete
🛉 🖉 SVLAN Frame Detect	10Base-TX HDX Unavailable	
n 🔿 Stacked VLAN Detect	100Base-TX FDX Unavailable	
	100Base-TX HDX Unavailable	Enhanced
	1000Base-TX FDX Unavailable	RFC 2544
	Demote Fault Unavailable	
		Toolkit
		×
Actions Convice Discuption Errors	Captura	
Service Disruption Errors OAM	Capture	
Start Traffic Up Loop LLB		

Most common problem is incorrect setting for auto negotiation

- Autonegotiation should be set for the same on both sides
- If it fails one side becomes set for Half-Duplex and errors and collisions appear on the link
- Other common problems include:
 - Disabled switch/router ports
 - Wrong SFP selected
 - Incorrect SFP or fiber type
 - > Bad cables
- You cannot loop or start traffic until you have near end connectivity.

Autonegotiation Mismatch – Is this good or bad?

V2 mts5800:0			- • •
System Tests	R,	📜 😣 🚺	9:50 AM
Reports Tools Help 🔞	▶ Port 1: 10/100/1000 Eth L	ayer 2 Traffic Term	
Port 1: 10/100/1000 Eth Layer 2 Traffic Term	🦳 Runr	ning 25s	Setup
Messages logged. Click to see			Ģ⇒
Ethernet Payload LBM/LTM J-Connect			
On Traffic User Defined 64			Restart
Auto Neg. Test Mode Frame Size			4
Summary	♦ Ethernet ♦	AutoNeg Status 🔷	Stop Test
Ethernet Acterna Test Packet Detect	OFF Link Advt. Status	Done	
Cink Active	Link Config ACK	No	
n 🔿 Frame Detect	Speed (Mbps)	100	
ATP Detect	Duplex	Half	SAM-
🖷 💿 VLAN Frame Detect	10Base-TX FDX	Unavailable	
SVLAN Frame Detect	100Base-TX FDX	Unavailable	
	100Base-TX HDX	Unavailable	Enhanced
	1000Base-TX FDX	Unavailable	RFC 2544
	1000Base-TX HDX	Unavailable	4
	Remote Fault	Unavailable	
	•		Toolkit
			×
Actions Service Disruption Errors OAM	Capture		
Start Traffic Up Loop LLB			

Far End Connectivity

Far End Connectivity

- On a Layer 3 network, loop up, Address Resolution Protocol (ARP), or Ping can verify far end connectivity. You cannot loop or start traffic until you get a successful reply.
- On a Layer 2 network, the loop up command and reply verify far end connectivity and place the far end test set in Local Loopback (LLB) mode.
- When in LLB, the test set will swap MAC and IP Addresses so that packets can be routed back to the originating test set.

- Protocol used to associate a MAC address with an IP Address
- IP host sends out an Ethernet broadcast packet containing the desired IP destination address.
- The desired host (or a router acting on its behalf) replies to the packet by sending a packet which contains an IP address and Ethernet address pair.

Common Layer 2 problems are:

- Incorrect encapsulation (None, VLAN, Q in Q)
- Incorrect VLAN ID
- Incorrect VLAN mapping in the Network
- > Common Layer 3 problems are:
 - Incorrect IP Addresses (source or destination address, DHCP)
 - Incorrect Default Gateway address or Subnet Mask
 - > IP routing issues in the network

Ping and Traceroute can troubleshoot Layer 3 problems

Service Level Agreements (SLAs)

What is "acceptable" service?

- Defined through Service Level Agreement between provider and the end customer
- SLAs usually specify **throughput**, **delay**, **frame loss**, **jitter**, availability, and mean-time to repair

Committed Information Rate

- The maximum guaranteed "Layer 1" data rate
- Although Metro Ethernet access rates are typically 100Mbps or 1Gbps, the CIR can be specified in 1 Mbps increments
- Delay, Frame Loss, and jitter should be measured at the CIR

Excess Information Rate

- The maximum "Layer 1" data before frames are discarded
- Frames are transmitted only if bandwidth is available

Why can't I just test with Ping or Ethernet OAM?

Same reasons you didn't test with just a ping in the T1 world

- PING and OAM do not check CIR of the link
 - Unknown if you are delivering 5Mb, 100Mb or 500Mb on a 100Mb service
 - Testing at the CIR shows other problems as it fills the buffers and network elements with test traffic stressing the network fully

PING and OAM frames are not treated the same as customer traffic

- Ping and Ethernet OAM are handled in software by the network elements (with the processor), customer and test traffic is handled in hardware
- Just because a network element can handle OAM traffic doesn't mean it can handle customer traffic and vice versa
- It is important to not just test to the NTE but through the NTE as problems may exist on the drop sides of the customer itself

Ethernet OAM/Ping is like shining a light through a tunnel to see if you can run a train through it. It isn't a bad first step, but you better do more testing before starting live traffic.

Layer 1, 2, and 3 Throughput

- Traffic generation is performed to assess the throughput and performance of the Network. Traffic must be formatted properly for the equipment in the test path:
 - Layer 2 equipment such as switches and NIDs require an Ethernet Header with valid MAC addresses.
 - Layer 3 equipment such as Routers require an IP header with valid IP addresses.

DA	SA	VLAN	Ту	/pe		Data		FCS	
Destination Type	Unicast	t	¢ Loo	р Туре		Broadcast		\$	
Destination MAC	00-80-	16-8A-50-E9							
Version	IPH Length	Т	OS/DSC	P			Packet Length		
Ider	Identification			Flags Fragment Of			gment Offset	Offset	
TT	Ľ		Protocol			Header Checksum		n	
		Source/Des	tination	Addre	sses				
			Options	5					
			Data	_	_	_			
Source IP Type	Static		\$ Sou	Source IP 192.168.1.5		Source IP 192.10		192.168.1.5	
Default Gateway	192.16	58.1.10	Sut	Subnet Mask 255.255.255.0					
Destination IP	192.16	58.1.2		F	Ping]			

- Test Results can also be displayed at multiple layers:
 - Layer 1 Throughput includes all overhead
 - Layer 2 Throughput excludes interframe gaps and Preambles that mark the start of frames
 - Layer 3 Throughput excludes layer 2 overhead (DA, DA, VLAN, Type, FCS)
 - Layer 4 Throughput excludes IP overhead (Version, IPH Length, TOS, ...)
 - 🔷 JDSU

Frame Loss – Count of lost or dropped frames

Affected by

- Buffer overruns in network components
- **Network Congestion** \succ
- Bad network elements

Customer Complaints

- Voice: clicks and fuzziness or even dropped calls in extreme situations
- Video: pixelization or blue screens
- Data: extremely long time to load web pages

Detailed Comments

- Test is run with a sequence number in every packet
- Run at max throughput as most packet loss problems can't be seen unless the network \succ and buffers are being stressed

Round Trip Time (Latency) – Network Delay

Affected by

- Priority queuing and traffic shaping methodologies
- Network Congestion and overall network layout (buffering)
- Length and type of Link (satellite or terrestrial)

Customer Complaints

- Voice: overtalk or echo
- Wireless backhaul: dropped calls
- Gamers: overall choppiness and delay

Detailed Comments

- The key time to test round trip time is when throughput is being maxed on the link, to ensure that buffering and live traffic is not going to delay the traffic
- Since PINGs are handled differently in network elements, are considered lowest priority traffic, and are sent at a very low bandwidth, they do not get accurate latency measurements

 TIME	STAMP 4	TIM	IESTAMP 3	TIM	IESTAMP 2	TIM	IESTAMP 1	
1	TIMESTAMP	2	TIMESTAMP	3	TIMESTAMP	4	TIMESTAMP	

Packet Jitter – variation in arrival time between packets

Affected by

- Priority queuing and traffic shaping methodologies
- Network Congestion and overall network layout
- Length and type of Link (satellite or terrestrial)

Customer Complaints

- Voice: clicking and popping noises
- Video: pixelization or blue screens

Detailed Comments

The key time to test packet jitter is when throughput is being maxed on the link, to ensure that queuing, buffering, and congestion are not increasing jitter

SLA Verification

- SLA verification involves testing the link for throughput, delay, frame loss, and jitter using various frame sizes
- Tests can be performed either manually (pressing the start traffic button) or automatically (RFC 2544 or Y.1564)
- > Manual testing can provide:
 - > One Way Delay measurement
 - Long-term (i.e. 72 hour) soak tests
- End result is a pass/fail assessment on the overall quality of the link

Sample SLA/MOP Values for Ethernet

Characteristics (one way)	Mobile Backhaul services	EPL/EVP	Voice Trunking Services
Bandwidth (CIR)	1 Mbps to 10 Gbps	1 Mbps to 10 Gbps	80 Kbps per call (2 Mbps per PRI)
Committed Burst Size	64 KBytes	64 KBytes	n/a
Frame Delay (Latency)	< 8 ms	< 25 ms	< 100 ms
Frame Delay Variation (Jitter)	< 2 ms	< 25 ms	< 20 ms
Frame Loss	< .001 %	< .01%	< 1 %
Throughput	99.995 %	99.99 %	n/a
Availability	99.999 %	99.99 %	99.99 %
Mean-time to repair	2 hours	4 hours	4 hours

Ethernet Standards Evolution

63

SLA Verification

Testing Methodologies

	Manual Testing	Enhanced RFC-2544	Y.1564 SAMComplete	RFC-6349 TrueSpeed	JDSU TrueSAM ™
Layer 2 Transparency	Yes	No	No	No	Yes
Layer 1-3 Throughput (CIR)	Yes	Yes	Yes	No	Yes
Layer 1-3 Throughput (EIR)	Yes	No	Yes	No	Yes
Policing	Yes	No	Yes	No	Yes
Round Trip Delay	Yes	Yes	Yes	Yes	Yes
Jitter	Yes	Yes	Yes	No	Yes
Frame Loss	Yes	Yes	Yes	No	Yes
Back to Back/CBS	Yes	Yes	Yes	Yes	Yes
Multiple Frame Sizes	Yes	Yes	No	No	Yes
System Recovery	Yes	Yes	No	No	Yes
Multiple Streams/COS	Yes	No	Yes	No	Future
TCP Throughput	Yes	No	No	Yes	Yes
Realtime Results	Yes	No	No	No	No
Realtime traffic manipulation	Yes	No	No	No	No
User Level	Expert	Novice	Novice to Intermediate	Novice to Intermediate	Novice to Intermediate

Traffic Generation testing is performed to verify a network's ability to support a specified load of traffic. It can be performed on networks prior to activation, or on active networks to assess the ability to handle extra users or applications. Throughput, Frame Loss, Jitter, Delay, and Maximum Burst Size (MBS) are measured while generating load.

- Constant Load Fixed frame intervals allows Jitter to be measured.
- Bursts Representative of actual network traffic. Allows CBS to be verified.
- Ramp Determine threshold at which network impairments such as frame loss and congestion occur.

JDSU

RFC 2544 testing validates the key parameters of a service level agreement.

> Throughput

SLA Verification

- Frame Loss
- Delay
- > Jitter
- Tests various frame lengths to simulate different traffic types
- Generates a pass/fail report indicating whether the link meets the SLA requirements

/2 mts5800:0								
System 🛄 Tests		C 11:49 AM						
		Port 1: 10/100/1000 Eth Layer 2 Tr Results						
☑J-QuickCheck Configs Symmetry Supplement								
All Tests Throughput Latency (RTD) Packet Jitter Frame Loss Back to Back System Recovery								
RFC 2544 test executes u	RFC 2544 test executes using Acterna Test Payload							
O Tests	Frame Lengths to Test	Max Bandwidth (Mbps)						
Throughput	Frame User Selected Length (64 - 10000)	150.00						
Latency (RTD) (requires Throughput)	✓ 64 512 □ 128 512							
Packet Jitter (requires Throughput)	256 512	Bit Rate						
Frame Loss	512 512	L1 Mbps 💌						
Back to Back (Burst Test)	1280 512							
System Recovery	✓ 1518							
(requires Throughput)	9600 512							
Exit	→	Run RFC 2544 Test						

SLA Verification

SLA Testing with Y.1564

Transmitted traffic

- Y.1564 validate the typical SLA of Carrier Ethernet-based services against a Bandwidth Profile (CIR, EIR, CBS, EBS) and KPIs (Delay, Jitter, Frame Loss)
- Offers a quick repeatable <u>Multi-Stream</u> test with pass/fail results

Mbps

- Two Phase Test Methodology:
 - Service Configuration Test (Ramp Test)
 - Each stream/service is validated

- e Tesi ed CIR Service 1 CIR Service 2 CIR Service 2 CIR Service 3 CIR Se
- 2. Service Performance Test (Multi Stream)
- All services are tested concurrently at the CIR

Mbps

Measured traffic

SLA Problems

> Failed tests may be due to incorrectly configured test settings:

- Incorrect CIR
- Invalid MTU
- Invalid thresholds
- Speed/Duplex Mismatch
- Wrong Frame Type Selected (DIX vs 802.3)
- Throughput issues may be due to autonegotiation mismatches, network elements being set up incorrectly, or congestion/bottleneck in the network.
 - > VLAN tagging by network elements may oversubscribe links.
- Frame Loss issues may be a faulty network element or bad fiber between locations
- Round Trip and Jitter issues are almost always due to excessive buffering in the network elements
- Failed tests can be characterized by reducing the throughput and testing individual frame sizes

Top problems seen while testing MetroEthernet:

- Auto-Negotiation set incorrectly
- DIX versus 802.3 framing
- Misconfigured CIR
- VLAN Mappings
- Jitter

• RFC 2544 and Y.1564sam only verify network performance at Layer 2 and 3 (Ethernet and IP), **but** end-customers complain that the "network is slow" (i.e. Facebook, YouTube, are slow)

• RFC 6349 IETF standard recognizes this and designates TCP throughput testing to **test the network "AS THE CUSTOMER EXPERIENCES IT"**

Turn-up Related Problem	RFC2544	Y.1564	RFC 6349	$\leftarrow \checkmark \checkmark \checkmark \leftarrow$
Single Service, Layer 2/3 SLA Issues (loss, jitter, etc.).			N/A	I E T F°
Multi-service, Layer 2/3 SLA Issues (service prioritization, loss, jitter, etc.).	X		N/A	
Demonstrate the effect of End customer TCP Window size on throughput (CPE issue).	X	X		
Inadequate device buffers to handle bursty applications.	X	X		ТСР
Policing effects to TCP performance.	X	X		

RFC 6349 = TrueSpeed!!!

What Applications use TCP?

Constant Bit Rate (CBR) Traffic Testing

Testing a Data Application as non-bursty traffic **is not realistic** and everything works fine

CBR + Bursty Traffic Testing

Testing a Data Application as bursty traffic can reveal buffering issues which degrade performance

TrueSpeed Turn-up

DSU

- What TCP window size do I use?, how many TCP sessions do I run to "fill the pipe"?, how can I tell if there's a problem and what it is?
- You just need to know the speed the customer ordered, TrueSpeed figures out the rest:
 - Simple set-up throughput and test time (entered by user)
 - Auto populate TCP window size and # of connections
 - Run upload then download (speed test) all from the local unit
 - Report simple "Pass / Fail" to local user

Connect to Port		5001	Total Test Tir	me(s)	120	
TCP Throughput (%)		95.0	✓ Automatic	✓ Automatically find MTU size		
Local				Remote		
Туре	DSCP	\$	CIR (Mbps) 100.000	Туре	TOS 🗘	
DSCP	BE(0)	\$		тоѕ	000000	
	•					

Truespeed- "Test as the customer experiences the network"

- Running RFC2544 or other Layer 2/3 installation tests (Y.1564) is always the first step
- But even when these Layer 2/3 tests "pass", end-customers can still complain that the "network is slow" and the cause of poor application performance (i.e. FTP, web browsing, etc.)
- Need to test "as the customer experiences the network" (TCP sessions)
- JDSU's **RFC 6349** compliant **TrueSpeed**[™] test allows the same technician who conducts traditional RFC2544 or Y.1564 tests to run an automated TCP throughput test in 3-5 minutes!
- Save up to 30% OPEX costs by eliminating or quickly resolving finger pointing scenarios

Truespeed Results Allow Identification of the Problem

Problem: I ordered 100Mb but I'm only getting 10Mb on web downloads, file transfers- FIX IT!!!

"Walk the Window" Results Graph:

- Customer shown that with a Window size of 32 Kb max througput achievable will only be 10 Mb
- If Window sizing is adjusted on CPE side max throughput will go to 100Mb

Throughput Graphs:

TCP connections are NOT evenly sharing the link and **policing** occuring but no traffic smoothing

Traffic was **shaped** and TCP was "smoothed" by the shaping function on the switch

Packet Capture at Full Line Rate

- Example- Run Packet Capture for Network Seperation Testing ensuring that customer traffic is not permeating onto provider network (or vice versa)
- Place T-BERD in Monitor Mode
- Test Method
 - a. Perform full line rate packet capture at 1G or 10G to detect invading non-provider traffic
 - b. Check packet decodes in WireShark on unit for customer control plane packets, incorrect VLANs, etc

Capture

- Capture packets from existing Ethernet & IP Applications
 - Apply filters to maximize efficiency
 - > Ability to export capture files that can be given to higher level techs
 - Capture in both directions simultaneously using Thru mode

Decode using Wireshark

		<u>G</u> o	<u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>Statistics H</u> elp							
WIRE S		Vzer 🙆	L 🚳 E	- 🖪 🕯	X 2	占 🔍 🔶 🗼 😜 🏠 🛃 🗐 🛃 🔍 🔍				
Network Prot	<u>Filter</u>	iyzei —				💌 💠 Expression 🔮 Clear 🎻 Apply				
	No. Tir	me	Source -	Destination	Protocol	Info	•			
	1 0.0	000000	10.0.52.164	61.8.0.17	TCP	2550 > http [SYN] Seq=0 Len=0 MSS=1460 WS=2	-			
	3 0.1	168000	10.0.52.164	61.8.0.17	TCP	2550 > http [ACK] Seq=1 Ack=1 Win=256960 Len=0				
	4 0.1	170000	10.0.52.164	61.8.0.17	HTTP	GET /openoffice/stable/2.0.0/OOo_2.0.0_Win32Intel_install.exe HTTP/1.1				
	8 0.3	336000	10.0.52.164	61.8.0.17	TCP	2550 > http [ACK] Seq=446 Ack=1790 Win=255168 Len=0				
	9 0.3	336000	10.0.52.164	61.8.0.17	TCP	[TCP Window Update] 2550 > http [ACK] Seq=446 Ack=1790 Win=256960 Len=0				
	11 0.4	494000	10.0.52.164	61.8.0.17	TCP	2550 > http [ACK] Seq=446 Ack=3250 Win=256960 Len=0				
	13 0.4	499000	10.0.52.164	61.8.0.17	TCP	2550 > http [ACK] Seq=446 Ack=4710 Win=256960 Len=0				
	15 0.5	506000	10.0.52.164	61.8.0.17	TCP	2550 > http [ACK] Seq=446 Ack=6170 Win=256960 Len=0				
	17 0.6	677000	10.0.52.164	61.8.0.17	TCP	2550 > http [ACK] Seq=446 Ack=7630 Win=256960 Len=0				
	19 0.6	683000	10.0.52.164	61.8.0.17	TCP	2550 > http [ACK] Seq=446 Ack=9090 Win=256960 Len=0	-			
	~ ~ ~ ~		0.0.50.101	~ ~ ~ ~ ~	700		-			
	▷ Frame 39	Frame 390 (54 bytes on wire, 54 bytes captured)								
	Ethernet II, Src: 08:00:46:f4:3a:09 (08:00:46:f4:3a:09), Dst: 00:04:75:c9:51:b6 (00:04:75:c9:51:b6)									
	Internet Protocol, Src: 10.0.52.164 (10.0.52.164), Dst: 61.8.0.17 (61.8.0.17)									
	Transmission Control Protocol, Src Port: 2550 (2550), Dst Port: http (80), Seq: 446, Ack: 306930, Len: 0									
	0000 00 04 75 05 51 05 00 00 46 14 32 05 00 00 45 00U.Q FE.									
	020 00 11 09 f6 00 50 02 f8 ed ee 7c a2 99 f7 50 10PP.									
	0030 fa f0 27	7 60 00 00					-			

> Utilize Wireshark on unit for post capture decode

J-Proof (L2 Transparency) Case Study

- A provider is selling an end-to-end transparent Layer 2 service and part of the link is leased from another network operator
- After completing the RFC 2544 test in which everything passed, they conduct a J-Proof test to emulate Layer 2 protocol frames.
- This will ensure that the entire link is properly forwarding ALL types of traffic
- The test discovers that CDP frames are being dropped. The 3rd party provider switches are not configured properly and are attempting to process the CDP frames (and then discarding them) instead of transparently forwarding them **JDSU**

One Way Delay

- The delay of information transmitted may not be the same as the delay of information received.
- The One Way Delay test option enables Cell Site Ethernet backhaul providers to measure the delay of Ethernet, IPv4 and IPv6 traffic that is received from a sender using a highly accurate CDMA receiver.

Testing & Trouble Shooting Summary

- What's your Test Access (Terminate, Thru, Mirror port,....)
- Physical Layer
 - Fiber Inspection to verify clean fiber connection
 - Power Levels good ?Negotiation mismatch
 - OTDR trace is good (no breaks, bad splices, macrobends,....)
 - Correct SFP or XFS installed (correct wavelength, rated for the service (GigE, 10GigE,...
- Layer 2/3 (Basics)
 - **Negotiation Mismatches-** BOTH sides have correct negotiation (If see HALFDUPLEX in results it's a Red Flag)
 - DIX vs 802.3 Frame type- use DIX as your default
 - Sending L2/L3 Test Packet (vs BERT)- has time stamp and Frame sequence counters to ensure you can get required test measurements (Latency/delay, Lost frames, Out of Sequence Frames,)
 - Test gear can "talk" with each other to run required tests
 - Loop up/down commands
 - Recognizes the Test Packet to ensure proper results (Throughput, Latency, Jitter, Frame Loss,,....)
- Troubleshooting & Advanced/In-depth Testing
 - Sectionalization
 - Committed Burst Size (CBS)- may be required as part of turnup test as well
 - RFC-6349 "Truespeed"
 - Resolving the "slow throughput" complaints (and an RFC-2544 or Y.1564 runs clean)
 - Run during turnup or for troubleshooting
 - Packet Captures (at line rate)
 - Capture at line rate and get detailed analysis to figure out root cause problem
 - Layer 2 Transparency Tests
 - Verify control plane protocols are not being manipulated as they travel through the network

Questions

